Optimal Grid Point Selection for Improved Non-Rigid Medical Image Registration

نویسندگان

  • Clinton Fookes
  • Anthony Maeder
چکیده

Non-rigid image registration is an essential tool required for overcoming the inherent local anatomical variations that exist between images acquired from different individuals or atlases, among others. This type of registration defines a deformation field that gives a translation or mapping for every pixel in the image. One popular local approach for estimating this deformation field, known as block matching, is where a grid of control points are defined on an image and are each taken as the centre of a small window. These windows are then translated in the second image to maximise a local similarity criterion. This generates two corresponding sets of control points for the two images, yielding a sparse deformation field. This sparse field can then be propagated to the entire image using methods such as the thin-plate spline warp or simple Gaussian convolution. Previous block matching procedures all utilise uniformly distributed grid points. This results in the generation of a sparse deformation field containing displacement estimates at uniformly spaced locations. This neglects to make use of the evidence that block matching results are dependent on the amount of local information content. That is, results are better in regions of high information when compared to regions of low information. Consequently, this paper presents a solution to this drawback by proposing the use of a Reversible Jump Markov Chain Monte Carlo (RJMCMC) statistical procedure to optimally select grid points of interest. These grid points have a greater concentration in regions of high information and a lower concentration in regions of small information. Results show that non-rigid registration can by improved by using optimally selected grid points of interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information

Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...

متن کامل

بهبود سرعت "انطباق مبتنی بر روش برش گراف" جهت انطباق غیر صلب تصاویر تشدید مغناطیسی مغز

Image processing methods, which can visualize objects inside the human body, are of special interests. In clinical diagnosis using medical images, integration of useful data from separate images is often desired. The images have to be geometrically aligned for better observation. The procedure of mapping points from the reference image to corresponding points in the floating image is called Ima...

متن کامل

Non-rigid registration of multiphoton microscopy images using B-splines

Optical microscopy poses many challenges for digital image analysis. One particular challenge includes correction of image artifacts due to respiratory motion from specimens imaged in vivo. We describe a non-rigid registration method using B-splines to correct these motion artifacts. Current attempts at non-rigid medical image registration have typically involved only a single pair of images. E...

متن کامل

Model-based Deformable Registration of MRI Breast Images with Enhanced Feature Selection MODEL-BASED DEFORMABLE REGISTRATION OF MRI BREAST IMAGES WITH ENHANCED FEATURE SELECTION

This thesis is concerned with model-based non-rigid registration of single-modality magnetic resonance images of compressed and uncompressed breast tissue in breast cancer diagnostic/interventional imaging. First, a volumetric registration algorithm is developed which solves the registration as a state estimation problem. Using a static deformation model. To reduce computations, the similarity ...

متن کامل

Applicability of Non-Rigid Medical Image Registration using Moving Least Squares

A drawback of the non-rigid registration is its unpredictable nature of the deformation on the target image. Mapping every point on images can cause deformations even to regions, which are expected to remain rigid. A non-rigid registration is desirable that produces only local deformations where needed, while still preserving the overall rigidity. This work focuses on one such method called the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004